首页> 外文OA文献 >Using the preconditioned Generalized Minimum RESidual (GMRES) method to solve the sea-ice momentum equation
【2h】

Using the preconditioned Generalized Minimum RESidual (GMRES) method to solve the sea-ice momentum equation

机译:使用预处理的广义最小残差(GMRES)方法求解海冰动量方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce the preconditioned generalized minimum residual (GMRES) method, along with an outer loop (OL) iteration to solve the sea-ice momentum equation. The preconditioned GMRES method is the linear solver. GMRES together with the OL is used to solve the nonlinear momentum equation. The GMRES method has low storage requirements, and it is computationally efficient and parallelizable. It was found that the preconditioned GMRES method is about 16 times faster than a stand-alone successive overrelaxation (SOR) solver and three times faster than a stand-alone line SOR (LSOR). Unlike stand-alone SOR and stand-alone LSOR, the cpu time needed by the preconditioned GMRES method for convergence weakly depends on the relaxation parameter when it is smaller than the optimal value. Results also show that with a 6-hour time step, the free drift velocity field is a better initial guess than the previous time step solution. For GMRES, the symmetry of the system matrix is not a prerequisite. The Coriolis term and the off-diagonal part of the water drag term can then be treated implicitly. The implicit treatment eliminates an instability characterized by a residual oscillation in the total kinetic energy of the ice pack that can be present when these off-diagonal terms are handled explicitly. Treating these terms explicitly prevents one from obtaining a high-accuracy solution of the sea-ice momentum equation unless a corrector step is applied. In fact, even after a large number of OL iterations, errors in the drift of the same magnitude as the drift itself can be present when these terms are treated explicitly.
机译:我们介绍了预处理的广义最小残差(GMRES)方法,以及外环(OL)迭代来求解海冰动量方程。预处理的GMRES方法是线性求解器。 GMRES与OL一起用于求解非线性动量方程。 GMRES方法具有较低的存储要求,并且计算效率高且可并行化。发现预处理的GMRES方法比独立的连续过松弛(SOR)求解器快约16倍,比独立的线SOR(LSOR)快三倍。与独立SOR和独立LSOR不同,预处理GMRES方法收敛所需的cpu时间弱于松弛参数(小于最佳值)。结果还表明,在6小时的时间步长下,自由漂移速度场比以前的时间步长解决方案更好。对于GMRES,系统矩阵的对称性不是先决条件。然后可以隐式处理科里奥利项和水阻力项的非对角线部分。隐式处理消除了以冰袋的总动能中的残余振荡为特征的不稳定性,当明确处理这些非对角项时,可能会出现残余振荡。除非应用校正步骤,否则显式地处理这些项会阻止人们获得海冰动量方程的高精度解。实际上,即使经过大量的OL迭代,当明确处理这些术语时,也会出现与漂移本身具有相同幅度的漂移误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号